Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
PLoS One ; 18(6): e0287681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37390086

RESUMEN

The Clibadium spp. is a shrub of occurrence in the Amazon, popularly known as Cunambi. The compounds in the leaves demonstrate ichthyotoxic properties, and its major substance, cunaniol, is a powerful central nervous system stimulant with proconvulsant activity. Few current studies relate behavioral changes to the electrophysiological profile of fish poisoning. This study aimed to describe the behavioral, electromyographic, electroencephalographic, electrocardiographic, and seizure control characteristics of anticonvulsant drugs in Colossoma macropomum submitted to cunaniol intoxication during bathing containing 0.3 µg/L cunaniol. The behavioral test showed rapid evolution presenting excitability and spasms, which were confirmed by the analysis of Electroencephalogram (EEG), Electromyogram (EMG), and changes in cardiac function detected in the ECG. Cunaniol-induced excitability control was evaluated using three anticonvulsant agents: Phenytoin, Phenobarbital, and Diazepam. While phenytoin was not effective in seizure control, diazepam proved to be the most efficient. These results demonstrate the susceptibility of Colossoma macropomum to cunaniol poisoning, given that the central nervous system and electrocardiographic changes were considered severe.


Asunto(s)
Characiformes , Electrocorticografía , Animales , Electroencefalografía , Anticonvulsivantes/farmacología , Diazepam
2.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35683023

RESUMEN

As aging and cognitive decline progresses, the impact of a sedentary lifestyle on the appearance of environment-dependent cellular morphologies in the brain becomes more apparent. Sedentary living is also associated with poor oral health, which is known to correlate with the rate of cognitive decline. Here, we will review the evidence for the interplay between mastication and environmental enrichment and assess the impact of each on the structure of the brain. In previous studies, we explored the relationship between behavior and the morphological features of dentate gyrus glial fibrillary acidic protein (GFAP)-positive astrocytes during aging in contrasting environments and in the context of induced masticatory dysfunction. Hierarchical cluster and discriminant analysis of GFAP-positive astrocytes from the dentate gyrus molecular layer revealed that the proportion of AST1 (astrocyte arbors with greater complexity phenotype) and AST2 (lower complexity) are differentially affected by environment, aging and masticatory dysfunction, but the relationship is not straightforward. Here we re-evaluated our previous reconstructions by comparing dorsal and ventral astrocyte morphologies in the dentate gyrus, and we found that morphological complexity was the variable that contributed most to cluster formation across the experimental groups. In general, reducing masticatory activity increases astrocyte morphological complexity, and the effect is most marked in the ventral dentate gyrus, whereas the effect of environment was more marked in the dorsal dentate gyrus. All morphotypes retained their basic structural organization in intact tissue, suggesting that they are subtypes with a non-proliferative astrocyte profile. In summary, the increased complexity of astrocytes in situations where neuronal loss and behavioral deficits are present is counterintuitive, but highlights the need to better understand the role of the astrocyte in these conditions.


Asunto(s)
Astrocitos , Disfunción Cognitiva , Envejecimiento , Astrocitos/metabolismo , Disfunción Cognitiva/metabolismo , Giro Dentado/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/metabolismo , Humanos , Conducta Sedentaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...